Hilbert spaces from path integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical Series from Path Integrals∗

We derive the semiclassical series for the partition function in Quantum Statistical Mechanics (QSM) from its path integral representation. Each term of the series is obtained explicitly from the (real) minima of the classical action. The method yields a simple derivation of the exact result for the harmonic oscillator, and an accurate estimate of ground-state energy and specific heat for a sin...

متن کامل

Path Integrals Without Integrals∗

Recently, we have developed an efficient recursive approach for analytically calculating the short-time expansion of the propagator to extremely high orders for a general many-body quantum system. Here we give brief overview of this approach and then demonstrate application of this technique by numerically studying the thermodynamical properties of a rotating ideal Bose gas of Rb atoms in an an...

متن کامل

Path Integrals and Perturbative Expansions for Non-Compact Symmetric Spaces

We show how to construct path integrals for quantum mechanical systems where the space of configurations is a general non-compact symmetric space. Associated with this path integral is a perturbation theory which respects the global structure of the system. This perturbation expansion is evaluated for a simple example and leads to a new exactly soluble model. This work is a step towards the con...

متن کامل

99 9 Semiclassical Series from Path Integrals ∗

We derive the semiclassical series for the partition function in Quantum Statistical Mechanics (QSM) from its path integral representation. Each term of the series is obtained explicitly from the (real) minima of the classical action. The method yields a simple derivation of the exact result for the harmonic oscillator, and an accurate estimate of ground-state energy and specific heat for a sin...

متن کامل

Singular Integrals on Hilbert Space

exists as a bounded operator on L(H) as ô tends to zero and p tends to infinity. A theorem of this type extends the Calderon-Zygmund theory of singular integral operators on En to infinite dimensions. For if fc(#)||x||-" is a Calderon-Zygmund kernel and if £ is a bounded Borel set which is disjoint from a neighborhood of the origin then v{E) =fEk(x)\\x\\~ dx satisfies v(tE) = v(E) for £>0; if g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2010

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/43/27/275302